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Abstract

IMPORTANCE Newborn screening for Angelman syndrome (AS), Prader-Willi syndrome (PWS), and
chromosome 15 duplication syndrome (Dup15q) may lead to benefit from early diagnosis and
treatment.

OBJECTIVE To examine the feasibility of newborn screening for these chromosome 15 imprinting
disorders at population scale.

DESIGN, SETTING, AND PARTICIPANTS In this diagnostic study, the validation data set for the first-
tier SNRPN test, called methylation-specific quantitative melt analysis (MS-QMA), included 109 PWS,
48 AS, 9 Dup15q, and 1190 population control newborn blood spots (NBS) and peripheral tissue
samples from participants recruited from January 2000 to December 2016. The test data set
included NBS samples from 16 579 infants born in 2011. Infants with an NBS identified as positive for
PWS, AS, or Dup15q by the first-tier test were referred for droplet digital polymerase chain reaction,
real-time polymerase chain reaction, and low-coverage whole-genome sequencing for confirmatory
testing. Data analyses were conducted between February 12, 2015, and August 15, 2020.

RESULTS In the validation data set, the median age for the 77 patients with PWS was 3.00 years
(IQR, 0.01-44.50 years); for the 46 patients with AS, 2.76 years (IQR, 0.028 to 49.00 years); and for
the 9 patients with Dup15q, 4.00 years (IQR, 1.00 to 28.00 years). Thirty-eight patients (51.4%) in
the PWS group, 20 patients (45.5%) in the AS group, and 6 patients (66.7%) in the Dup15q group
who had sex reported were male. The validation data set showed MS-QMA sensitivity of 99.0% for
PWS, 93.8% for AS, and 77.8% for Dup15q; specificity of 100% for PWS, AS, and Dup15gq; positive
predictive and negative predictive values of 100% for PWS and AS; and a positive predictive value of
87.5% and negative predictive value of 100% for Dup15g. In the test data set of NBS samples from
16 579 infants, 92 had a positive test result using a methylation ratio cut-off of 3 standard deviations
from the mean. Of these patients, 2 were confirmed to have PWS; 2, AS; and 1, maternal Dup15q.
With the use of more conservative PWS- and AS-specific thresholds for positive calls from the
validation data set, 9 positive NBS results were identified by MS-QMA in this cohort. The 2 PWS and
2 AS calls were confirmed by second-tier testing, but the 1 Dup15q case was not confirmed. Together,
these results provided prevalence estimates of 1in 8290 for both AS and PWS and 1in 16 579 for
maternal Dup15q, with positive predictive values for first-tier testing at 67.0% for AS, 33.0% for PWS,
and 44.0% for combined detection of chromosome 15 imprinting disorders for the validation

data set.

CONCLUSIONS AND RELEVANCE The findings of this diagnostic study suggest that it is feasible to
screen for all chromosome 15 imprinting disorders using SNRPN methylation analysis, with 5
individuals identified with these disorders out of 16 579 infants screened.
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Key Points

Question Is newborn screening feasible
for chromosome 15 imprinting disorders,
including Prader-Willi, Angelman, and
Dup15q syndromes, using SNRPN
methylation analysis?

Findings This diagnostic study involved
validation of a novel methylation test
on 1356 samples, showing high
sensitivity and specificity and positive
and negative predictive values to
differentiate newborn blood spots and
blood, saliva, and buccal DNA of 109
Prader-Willi, 48 Angelman, and 9
Dupl5q patient samples from
neurotypical control samples. Newborn
blood spots from 16 579 infants from
the general population were then
tested, identifying 2 with Prader-Willi
syndrome, 2 with Angelman syndrome,
and 1 with Dup15q syndrome.

Meaning The findings of this study
suggest that it is feasible to screen for all
chromosome 15 imprinting disorders
using SNRPN methylation analysis.
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Introduction

Chromosome 15 imprinting disorders, comprising Angelman syndrome (AS), Prader-Willi syndrome
(PWS), and chromosome 15 duplication syndrome (Dup15q), are caused by deletions, duplications, or
epimutations at the same imprinted region located at chromosome 15q11-q13."2 The 3 conditions
have distinct phenotypes, but intellectual disability, aberrant behaviors, and social communication
deficits are shared features.>* The promoter of the SNRPN gene, at the 15q11.2 locus, is differentially
methylated according to the parent of origin, with the maternal copy being methylated and the
paternal copy unmethylated. This feature is used routinely in the molecular diagnosis of AS and PWS.
SNRPN promoter is usually unmethylated in AS owing to deletion of the maternal copy, paternal
uniparental disomy of chromosome 15, or an imprinting defect of the maternal locus.? In contrast, in
PWS, SNRPN promoter is usually 100% methylated owing to paternal deletion, maternal uniparental
disomy of chromosome 15, or an imprinting defect of the paternal allele.>® Dup15q results from
duplications or triplications of the PWS or AS imprinted region, with triplication resulting from a
supernumerary chromosome (isodicentric 15 [idic15]) and duplication resulting from an interstitial
tandem duplication,? resulting in differential SNRPN promoter methylation according to the parent of
origin and the number of additional copies.

The advent of new genetic technologies and potential therapies has led to renewed interest in
newborn screening for rare disorders,” including genetically determined neurodevelopmental
disorders for which early detection may benefit affected newborns and their families. Individuals
affected by PWS, AS, or Dup15q may benefit from newborn screening followed by early targeted
interventions that may become available in the next 5 years.2'° For PWS, diagnosis in infancy allows
for early initiation of growth hormone treatment to improve long-term outcomes." For AS and
Dup15q, most infants do not receive a diagnosis that would allow intervention in the first year of life.
Such early diagnosis, if available through newborn screening, could prevent the diagnostic odyssey,
reducing medical costs and the significant stress and anxiety currently experienced by families while
they await a diagnosis. For AS, there is now also an impending treatment aiming to reactivate UBE3A
in clinical trials.’® A similar treatment has been recently developed for spinal muscular atrophy,
resulting in this condition now being added to state-sponsored newborn screening programs.'

This unmet need has been recognized by 2 previous studies that proposed utility of SNRPN
promoter methylation as a first-tier test for PWS and/or AS newborn screening.*'® These studies
used a small number of samples from PWS and/or AS patients and controls, primarily focused on
methods of DNA extraction from blood spots, but did not examine method feasibility at population
scale or utility for detection of infants with Dup15qg. The primary objective of this study was to
examine the feasibility of employing and implementing a novel workflow utilizing a first-tier high-
throughput, low-cost screening test called methylation-specific quantitative melt analysis (MS-QMA)
to quantify abnormal levels of SNRPN promoter methylation at population scale required for
newborn screening for these conditions. It was hypothesized that it is feasible to perform newborn
screening for chromosome 15 imprinting disorders using quantitative analysis of SNRPN promoter
methylation as a first-tier test at a population scale.

Methods

Participants and Ethics

In this diagnostic screening study, participants for the test validation cohort were recruited as part of
the FREE FX study>'® and through pathology and clinical genetics services between January 2000
and December 2016 as detailed in eAppendix 1in the Supplement. Data collection included
retrospectively retrieved newborn blood spots (NBS) and dried blood spots (DBS) made at time of
recruitment, as well as venous blood, buccal epithelial cells, and saliva samples for individuals with
PWS (109 samples), AS (48 samples), or Dup15q (9 samples) and controls (1190 samples) from the
general population. Data on race and ethnicity were not available for NBS samples from controls
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consented for deidentified research and most individuals affected with PWS, AS, and dup15q
included in this study. These samples were used to validate MS-QMA as a first-tier test, establishing
optimal SNRPN promoter methylation thresholds to make positive calls. Participants' parents or
guardians, and those participants who were cognitively able, provided written informed consent or
had a legally acceptable representative provide consent. The test cohort included NBS consented for
deidentified research from a population sample of 16 579 infants. These samples were used to
examine feasibility of screening using MS-QMA at population scale. All study procedures were
approved by the Royal Children’s Hospital Human Research Ethics Committee on May 24, 2013. This
study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
reporting guideline.

Overview of the Testing Workflow

The testing workflow consisted of first-tier high-throughput, low-cost screening using MS-QMA that
detected abnormal levels of SNRPN promoter methylation applied to screen for chromosome 15
imprinting disorders in 16 579 infants consented for deidentified research as detailed in eFigure 1and
eAppendix 1in the Supplement. All DNA and lysate from DBS samples (60-150 ng of DNA per sample
analyzed using MS-QMA) were treated with sodium bisulfite prior to downstream methylation
analysis. Bisulfite conversions were performed using either manual conversion with the EZ-96 DNA
Methylation-Gold kit (Zymo Research), or automated conversion utilizing the EpiTect Bisulfite Kit
(Figure 1) and QlAcube HT benchtop automation system (Qiagen), with MS-QMA first-tier testing
performed as described in eAppendix 2 in the Supplement. The second-tier testing was performed
on NBS-positive samples by MS-QMA and involved SNRPN promoter methylation analysis using
competitive priming initiated nested quantification (CINQ) by droplet digital polymerase chain
reaction (ddPCR) and copy number variation (CNV) analysis using the real-time PCR. CINQ ddPCR
was performed using a total of 1-10 ng of purified DNA from diagnostic samples and controls or 20
of DBS lysate per sample, which were initially bisulfite converted, then amplified using CINQ ddPCR
chemistry (eFigure 2 in the Supplement) and analyzed as described in eAppendix 3 in the
Supplement. Copy number variation analysis was performed with the ViiA 7 Real-Time PCR System

Figure 1. Validation of SNRPN Promoter Methylation Analysis Using Methylation Specific Quantitative Melt Analysis (MS-QMA) on 1356 Samples

D Control range (+2 SD from the mean) D AS range D PWSrange O NBS false-positive @ AS: UBE3A sequence mutation @ NBS false-negative

1.0+ o o © &o o 0.99
e 8
€ 03| ©
c
2 ﬁ 0.70
i
2 067
2 ° g
£
& 0.4
Z 033
<<
S 0.2
N
=

ol & @0.... 0.02
GP GP PWS PWS PWS AS Controls PWS PWS PWS Mat Dup AS
NBS (Qg) NBS (Zm)  DBScr(Zm) DBScr(Qg)  NBS/DBS NBS/DBS (Bl) (Bl) (BUC/SL)  MOS (BI)  15q (BI) (BI)
(n=831) (n=322) (n=10) (n=12) (Zm) (n=22) (Zm) (n=9) (n=37) (n=58)3 (n=5) (n=2) (n=9) (n=39)°
Group
To monitor variability between runs, each 96-well plate had the following controls: (1) a from standard diagnostic testing for chromosome 15 imprinting disorders. Mat indicates

dried blood spot sample from the same Prader-Willi syndrome (PWS) control (denotedas ~ maternal; MOS, mosaic PWS confirmed through standard diagnostic testing.

PWS DBScr) and Angelman syndrome (AS) and PWS-spiked DNA samples. NBS indicates s 5amples from a total of 44 individuals with AS, with 2 not overlapping between the AS
newborn blood spots from the general population, showing comparison between (BL) and AS (NBS/DBS) groups.

Qiagen's (Qg) and Zymo's (Zm) bisulfite conversion systems. Of the 22 PWS NBS/DBS
samples, 10 were from NBS, and 12 were from DBS made at time of recruitment. Of the
10 AS NBS/DBS samples, 3 were from NBS, and 7 were from DBS made at time of
recruitment. Blood (BL), buccal epithelial cell (BUC), and saliva (SL) DNA had high quality

b Samples from a total of 72 individuals with PWS, with 7 not overlapping between the
PWS (BL) and PWS (NBS/DBS) groups.
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(Thermo Fisher Scientific) by using the real-time PCR relative standard curve method, normalized to
[-globin copy number (2-copy control) as described in eAppendix 4 in the Supplement.
Low-coverage whole-genome sequencing (LC-WGS)>° third-tier testing was performed only on
samples that were positive by both first- and second-tier testing SNRPN CNV and methylation
analyses as detailed in eAppendix 5 in the Supplement.

Statistical Analyses

For the test cohort, positive predictive values (PPVs) were defined as the probability that individuals
with a positive NBS MS-QMA test result truly have a molecular diagnosis of a disorder as confirmed
using second- and third-tier testing. Specifically, this was the number of NBS samples that were
positive by MS-QMA confirmed to be positive by second- and third-tier testing divided by the total
number of NBS samples that were positive by MS-QMA (using specific thresholds detailed in eTable 1
in the Supplement). The prevalence was defined as the number of confirmed positive NBS samples
divided by total number of NBS samples analyzed using MS-QMA. The confidence intervals for
prevalence estimates were calculated using binomial distribution,"” conducted using Stata software,
version 16 (StataCorp LLC). Data analyses were conducted between February 12, 2015, and August
15, 2020.

Results

Development and Validation of First-Tier Screening Protocol

Methylation-specific quantitative melt analysis of the SNRPN promoter methylation was developed
using DNA samples from individuals with PWS and AS, spiked at different ratios (eFigure 3 in the
Supplement) and then applied to 1356 samples, including NBS from the general population
(eAppendix 6 in the Supplement). This cohort included NBS, DBS, and venous blood, buccal
epithelial cells, and saliva samples from 77 individuals with PWS (median age, 3.00 years [IQR, 0.01-
44.5 years]; 38 male [51.4%]), 46 individuals with AS (median age, 2.76 years [IQR, 0.028-49.00
years]; 21 male [45.5%]), and 9 individuals with maternal Dup15q (median age, 4.00 years [IQR, 1.00-
28.00 years]; 6 male [66.7%]) (eTables 2-4 in the Supplement), corresponding to the results
presented in Figure 1. Nine patients (6 PWS and 3 AS) whose samples were also analysed using
MS-QMA did not have age reported. These patients were not included in the calculations of the
percentage of males in each group. For this validation data set, MS-QMA showed a sensitivity of
99.0% for PWS, 93.8% for AS, and 77.8% for Dup15q; specificity of 100% for PWS, AS, and Dup15q;
a PPV and negative predictive value (NPV) of 100% each for PWS and AS; and a PPV of 87.5% and
NPV of 100% for Dup15q (eFigure 4 in the Supplement).

First-Tier Screening on NBS From 16 579 Infants

Methylation-specific quantitative melt analysis was then applied to 16 579 NBS samples consented
for deidentified research (Figure 2). In contrast to blood spots used for MS-QMA validation that were
stored for less than 1year (Figure 1), NBS samples from the larger cohort had been stored for longer
than 5 years at room temperature prior to MS-QMA analysis, except for 830 NBS samples that were
included in both validation and test cohorts. SNRPN promoter methylation analysis using MS-QMA
in 16 579 NBS identified 92 cases (0.55%) (eTable 1in the Supplement) with values outside the
normal range (3 standard deviations from the mean), which were referred for confirmatory testing
(Figures 3 and 4). There was no significant difference in SNRPN promoter methylation between
sexes in this cohort (eTable 5 in the Supplement) with the numbers and statistics for samples
analyzed summarized in eTable 6 in the Supplement.
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Development and Application of Second-Tier Methylation-Based

Confirmatory Testing

CINQ ddPCR for second-tier testing was developed and validated on high-quality DNA isolated for
diagnostic testing (eFigure 5 in the Supplement) and showed 100% sensitivity and specificity to
differentiate blood spot and venous blood DNA of 33 individuals affected with chromosome 15
imprinting disorders from 44 neurotypical controls (eAppendix 7 in the Supplement). Of the 92 NBS
samples that were positive by MS-QMA analysis, only 5 samples had a methylation ratio outside the
normal reference range and were called as confirmed positive cases by CINQ ddPCR. Raw CINQ

Figure 2. Quantitative Analysis of SNRPN Promoter Methylation Using MS-QMA First-Tier Testing
on Newborn Blood Spots (NBS) From 16 579 Infants
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Figure 3. Confirmatory SNRPN Promoter Methylation Testing Using Competitive Priming Initiated Nested
Quantification Using Droplet Digital PCR (CINQ ddPCR) on Newborn Blood Spot (NBS) Samples Tested Positive
by First-Tier MS-QMA Screening
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Frequency distribution histogram from 16 579 NBS
samples, with each vertical bar representing NBS
methylation values. While the mean (p), minimum, and
maximum values (2 SDs from the mean) in this larger
data set were almost identical to those in the initial
validation data set (Figure 1), the spread of tails at both
ends of the distribution for this larger data set was
greater. Subsequently, the minimum and maximum
cut-off values of the normal distribution for the larger
data set were increased to 3 SDs from the mean for
calling of positive cases. Vertical broken lines represent
the mean methylation value and +/- 3 SDs from the
mean; the n values indicate the number of positive
cases above or below these upper and lower normal
distribution values; and extreme outliers at either end
of the distribution reflexed for second-tier testing are
circled in orange.

A, SNRPN methylation ratio from CINQ ddPCR analysis
of a single 3 mm punch per blood spot, including 20
storage-matched control NBS samples (from the
general population with MS-QMA methylation ratio of
0.5), dried blood spot samples from 25 patients with
PWS, 22 patients with AS, and 11 patients with Dup15q
syndrome identified as part of standard diagnostic
testing, as well as 92 NBS samples that tested positive
by MS-QMA analysis, as part of first-tier testing. NBS
IDs are included for the 5 samples confirmed to have
abnormal SNRPN promoter methylation. B, Summary
of NBS samples that were positive by both CINQ
ddPCR and MS-QMA testing from Figure 2 and results
on the SNRPN copy number variation (CNV) analysis
from Figure 4, with calls made based on neurotypical
control reference ranges (NR) and methylation ratio
reference ranges in panel A from DBS samples from
patients with diagnosis confirmed by standard of care
diagnostic testing. N/A indicates value not available.
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ddPCR data from 2-D plots from these positive samples (eFigure 6 in the Supplement) were used to

support these calls.

Second-Tier CNV Locus Specific Confirmatory Testing

Copy number variation analysis was validated on DBS samples from 25 patients with PWS, 22
patients with AS, and 11 patients with Dup15q identified as part of standard diagnostic testing and on
20 control NBS samples (from the general population with MS-QMA methylation ratio of 0.5). These
controls were storage-matched for the samples shortlisted as part of first-tier screening by MS-QMA.
The analysis was co-run with 69 NBS samples shortlisted from the first-tier MS-QMA screen that had
sufficient lysate available following CINQ ddPCR analysis (Figure 4). For positive and negative
controls, the CNV analysis showed sensitivity and specificity approaching 100% to differentiate (1)
PWS, AS, and isodicentric and tricentric Dup15q from one another and from the NBS controls and (2)
deletion from nondeletion PWS and AS groups and from isodicentric and tricentric Dup15q subtypes.
The CNV ratio for only 1archival control NBS overlapped with the interstitial Dup15q range,
suggesting that long-term storage on archival NBS samples contributed to variability in the CNV ratio.
For the 69 NBS samples shortlisted from the first-tier MS-QMA screen, the assay identified 2 distinct
outliers, one within the deletion range (59D7) and the other in the tricentric Dup15q range (205F1).
These 2 samples were reflexed for LC-WGS third-tier testing to confirm these CNV results (Figure 5).

Development of Third-Tier Confirmatory Testing Using LC-WGS

For patient samples that returned a positive CNV test result, routine analysis would be to collect an

additional DNA sample to perform a copy number analysis using a chromosomal microarray or a

similar platform. However, owing to the restricted material available for each sample and DNA quality

issues related to long-term storage at room temperature in this study, array-based approaches were
not feasible. As an alternative, we used low-input LC-WGS to identify chromosomal CNVs from a
single 3 mm NBS punch as input. Low-coverage whole-genome sequencing was developed and
validated on DBS samples from individuals with a confirmed diagnosis through standard diagnostic

Figure 4. Confirmatory SNRPN Copy Number Variation (CNV) Testing Using Real-Time Polymerase Chain Reaction (PCR) Relative Standard Curve Method
on Newborn Blood Spot (NBS) Samples That Were Positive by First-Tier MS-QMA Testing
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Of the 92 NBS samples shortlisted from first-tier testing that were tested by CINQ
ddPCR, sufficient DNA was available for only 69 NBS samples for CNV confirmatory
testing. SNRPN CNV analysis was performed using real-time PCR relative standard curve
method of a single 3 mm punch per blood spot, including dried blood spot (DBS) samples
from 25 patients with PWS, 22 patients with AS, and 11 patients with Dup15q syndrome
identified as part of standard diagnostic testing, as well as 20 storage-matched control
NBS samples (from the general population with MS-QMA methylation ratio of 0.5) and
69 NBS samples that were positive by quantitative MS-QMA analysis. For all DBS
samples used to establish CNV reference ranges, the copy number of the PWS/AS
imprinted region was confirmed in diagnostic settings using chromosomal microarray.
The 1-copy reference range (highlighted in brown) between 0.97 and 1.26 CNV ratio units

was established using minimum and maximum values from 20 deletion cases (PWS and
AS deletion groups collapsed). The 2-copy reference range (highlighted in green)
between 1.62 and 2.02 CNV ratio was established using minimum and maximum values
from 27 nondeletion cases (PWS and AS nondeletion groups collapsed). The 4- and
5-copy reference ranges (highlighted in purple and gray) were established using
minimum and maximum values from DBS samples from 4 interstitial 15q duplication and
6 isodicentric 15q patients. Although the 7-copy reference range could not be established
because there was only 1patient with tricentric 15q, the reference value for that 1 DBS
sample has been included (highlighted in light blue). Black arrows point to 2 samples
with the highest and lowest values overlapping with tricentric 15q and deletion CNV
ranges that were reflexed to LC-WGS confirmatory testing.
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testing and controls from the general population. This method effectively differentiated between

idic15, deletion, and control samples with 100% specificity and sensitivity, using lysate from a single
3 mm punch per blood spot. Moreover, this method could be used to differentiate breakpoints for

DBS samples from idic15 cases (eFigure 7 in the Supplement).

Application of Third-Tier Confirmatory Testing Using LC-WGS

The 2 samples that returned the highest and lowest CNV ratio results (Figure 4) were investigated
using LC-WGS. Case 59D7 showed typical AS caused by the deletion of the 15q11.2-q13 region
(NC_000015.9:2.23100001_28300000del). Case 205F1 showed a supernumerary duplication
encompassing 2 copies of the 15q11.2-q13 with the duplication extending to 15q13.3 (NC_000015.9:
g.22550001.30100000[4]; NC_000015.9:2.30300001_32250000(3]). This duplication

Figure 5. Confirmatory Testing Using Low-Coverage Whole Genome Sequencing (LC-WGS)
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LC-WGS analysis on newborn blood spot (NBS) samples that tested positive by first- and
second-line testing, with the lowest and highest copy number variation results of the
shortlisted samples, confirming that A, 59D7 is a typical Angelman syndrome case
caused by the type Il deletion of the 15g11.2-q13 region between BP2 and 3 highlighted by
orange rectangle; and that B, 205F1is an idic15 case, with larger duplicated region
encompassing 15q11.2-q13 PWS/AS imprinted center highlighted by the dark blue
rectangle; the proximal region is highlighted by light blue rectangle, encompassing an

additional gene cluster proximal to CHRNA7, with specific locations and gene names
included in panel C. Approximate locations of common breakpoints BP1to BP5 are

indicated in green.'®'° In panels A and B, the gray, light blue, and orange lines represent
the thresholds for the relative numbers of 4 copies, 3 copies, and 1 copy, respectively.
The gray line with the log,(ratio) of O (y-axis) represents the threshold for the relative

number of 2 copies. BP indicates breakpoint.
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encompassed a gene cluster proximal to CHRNA7 but at a lower coverage, suggesting the presence
of 3 copies for this region relative to the estimated 4 copies for the 15q11.2-q13 imprinted region
(Figure 5). This observation is consistent with 205F1 being idic15, with 1 breakpoint at BP4 and 1
breakpoint at BP5. This is a common arrangement previously reported for idic15'®'° and is consistent
with the LC-WGS validation data set for the idic2 panel in eFigure 7B in the Supplement.

Positive Predictive Values for MS-QMA First-Tier Screening

We determined PPVs and prevalence estimates from quantitative methylation analysis performed on
16 579 NBS samples (eTable 1and eFigure 8 in the Supplement) using 2 sets of thresholds. Use of less
conservative thresholds (0.255 to 0.765 methylation ratio; mean [+3 SD] methylation ratio, 0.51
[0.255]) for the MS-QMA first-tier testing resulted in PPVs of 10.0%, 2.7%, and 1.1% for AS, PWS, and
Dup15q, respectively. Use of more conservative thresholds from Figure 1on DBS samples with PWS
and AS diagnosis confirmed in diagnostic settings (PWS methylation ratio =0.88; AS methylation
ratio =0.12) resulted in PPVs of 67.0% for AS, 33.0% for PWS, and 44.0% for all chromosome 15
imprinting disorders combined for the validation cohort. Although the use of more conservative
thresholds improved these PPVs, it prevented MS-QMA from detecting 1 Dup15q case.

Discussion

We have demonstrated the feasibility of a workflow using quantitative analysis of SNRPN promoter
methylation as a first-tier test to screen for chromosome 15 imprinting disorders using NBS from an
unbiased newborn cohort at a population scale. The preliminary prevalence estimates for AS and
PWS were at 1in 8290, and for Dup15q syndrome at 1in 16 579. These figures for AS and PWS are
consistent with a Danish study reporting a prevalence of 1in 10 000 for AS?° but are higher than
those previously reported for PWS in biased cohorts with prevalence ranging between 1in 15 000?'
and 1in 30 000.2223 The MS-QMA first-tier testing showed relatively high PPVs for molecular
diagnosis of AS and PWS in line with the first-tier testing currently included in state-sponsored
newborn screening programs. The MS-QMA PPVs were determined in this study test cohort to be
67% for AS, 33% for PWS, and 44% for all chromosome 15 imprinting disorders combined. For
comparison, PPVs for many of the conditions included in the state-sponsored newborn screening
programs range between 0.5% and 67%.2426 Having high PPVs is important for newborn screening,
because it ensures that (1) there is a lower number of false-positive results that need to be repeated,
leading to lower overall laboratory costs; (2) there is less work for maternity services in obtaining a
repeat blood sample for the majority of cases flagged as potential positives; and (3) there is
minimized psychological effect from false-positive calls for the families contacted as part of the
follow-up.

Importance of Quantitative Methylation Analysis as Part of First-Tier Screening
Detection of all 5 probands with confirmed molecular diagnoses was only made possible in this study
by the inclusion of quantitative methylation analysis as a first-tier test, wherein distinct positive and
negative thresholds could be applied in an objective manner. Another study using a high-resolution
melt-based method suggested exclusive use of qualitative subjective analysis of derivative curves
for newborn screening of chromosome 15 imprinting disorders (trialed on only a small number of
samples).” From the large population-scale high-resolution melt data set used for MS-QMA analysis,
we found that this subjective approach would not have identified 4 of the 5 probands confirmed to
be positive in this study (eFigure 8 in the Supplement).

It is important to also note that quantitative analysis using MS-QMA was initially developed for
newborn screening of fragile X syndrome in both sexes, targeting FMR1 promoter methylation,?”-28
but was modified to also detect SNRPN promoter methylation in this study. This modification sets the
proposed approach apart from other methods'"> because MS-QMA has the potential to
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simultaneously screen newborns for chromosome 15 imprinting disorders and fragile X syndrome, as
well as other rare disorders with distinct methylation signatures.?®

Reagent Cost and Sample Requirements for First-Tier Newborn Screening

One important reason why chromosome 15 imprinting disorders are not included in current newborn
screening programs is the lack of a first-tier test that has low laboratory costs. The test also must
work on one or two 3 mm punches of NBS material that may be of poor quality, which may be
problematic for genetic or genomic testing technologies that require DNA extraction with DNA of
much higher concentration and quality (that in itself would make the test too expensive at
approximately US$10 per extraction), such as chromosomal microarray, multiplex ligation-
dependent probe amplification,'* and methylation-specific high-resolution melt.'

For comparison, the reagent cost to simultaneously test for the 3 conditions (PWS, AS, and
Dup15q) on a single 3 mm punch was less than US$4 in this study, or less than US$1.3 per condition
per infant. This cost was made possible through use of high-throughput crude DNA extraction (no
commercial kits used) in 96-well format, automated bisulfite conversion using the QlAcube HT
system (Qiagen), and low volumes for MS-QMA screening (5 pl reactions, 96 at a time) to further
minimize the reagent cost.

Limitations

The primary limitation of this study is that the identified probands could not be followed up to assess
their phenotype. Lack of follow-up meant that the positive results could not be confirmed on another
tissue sample in diagnostic settings. The deidentified nature of the study also precluded any
estimates of the false negative rate of screening. However, comparison of the prevalence estimates
from our study with reported estimates suggest that this rate would be low. Another limitation is that
AS, owing to a UBE3A sequence mutation, shows normal SNRPN promoter methylation approaching
50% and could not be differentiated by MS-QMA from general population controls. This suggests
that the AS estimates provided might not be totally accurate, given that 10% of AS cases are thought
to be caused by UBE3A mutations.? Moreover, although the use of more conservative thresholds
significantly improved PPVs for AS and PWS, it prevented detection of the maternal Dup15q case,
which may be considered as another limitation. However, with fresher samples in future prospective
studies, limitations associated with DNA quality issues and use of less conservative thresholds on
results from archival blood spots would be addressed, as in Figure 1. Moreover, cases positive by
MS-QMA will be reflexed for second- and third- tier testing on another NBS punch, with the clinical
proof of Dup15q coming from LC-WGS to further increase diagnostic yield for Dup15q.

Conclusions

In summary, this diagnostic study demonstrated that screening for all chromosome 15 imprinting
disorders at a population scale was feasible using quantitative analysis of SNRPN promoter
methylation, with the reagent cost, sample requirements, prevalence, and PPV estimates compatible
with screening for other conditions in the state sponsored programs. If these findings and the
preliminary prevalence estimates are confirmed in larger future prospective studies, this workflow
could ensure that early interventions for these disorders are uniformly available to most infants from
birth as part of state-sponsored newborn screening programs.
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